Contents lists available at SciVerse ScienceDirect

Journal of Fluorine Chemistry

journal homepage: www.elsevier.com/locate/fluor

Short communication

Synthesis of 3-fluoro-2-(diethoxyphosphoryl)imidazo[1,2-a]pyridine

Alexei Yu. Aksinenko^{*}, Tatyana V. Goreva, Tatyana A. Epishina, Vladimir B. Sokolov

Institute of Physiologically Active Compounds, Severnyi pr. 1, Chernogolovka, Moscow Region 142432, Russia

ARTICLE INFO

Article history: Received 18 January 2012 Received in revised form 3 February 2012 Accepted 7 February 2012 Available online 1 March 2012

Keywords: Fluorinated heterocycles Phosphorylated heterocycles Fluoroimidazopyridines Defluorocyclization

ABSTRACT

The first representative of 3-fluoro-2-(dialkoxyphosphoryl)imidazo[1,2-*a*]pyridines has been synthesized by the reaction of N-(pyridin-2-yl)-2,2,2-trifluoroacetimidoyl chloride with triethyl phosphite. © 2012 Elsevier B.V. All rights reserved.

1. Introduction

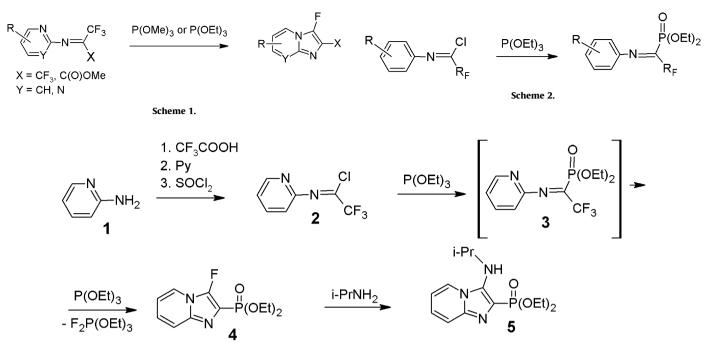
Imidazoheterocyclic derivatives play an important role in the area of medicinal chemistry. These compounds have been found to exhibit cardiac stimulant [1], arrhythmic [1] or neurotropic [2,3] activities, exert cytoprotective and antitumor action [4]. Also they are promising candidates for treating Alzheimer's disease [5].

Previously, we have reported the new approach to the synthesis imidazoheterocycles. Derivatives of 3-fluoroimidazo[1,2-*a*]pyridines and 3-fluoroimidazo[1,2-*a*]pyrimidines were obtained by defluorocyclization of 2-pyridyl and 2-pyrimidinyl imines of hexafluoroacetone and methyl trifluoropyruvate with trimethyl phosphite [6–9] (Scheme 1). Later our method was extended to the synthesis of imidazo[2,1-*b*][1,3]thiazoles [10].It is known that N-arylimidoylchlorides interact with triethyl to form N-arylimidoyl phosphonates phosphite by the Arbuzov's reaction [11,12] (Scheme 2).

Herein, we present the combination of the Arbuzov's and defluorocyclization reactions for the synthesis of novel representatives of heterylphosphonic acids, namely, substituted 2-(dia-lkoxyphosphoryl)imidazo[1,2-*a*]pyridines. It should be noted that we know only one example of the synthesis of 2-(dialkoxyphosphoryl)imidazo[1,2-*a*]pyri(mi)dines using the cyclization of

E-mail address: alaks@ipac.ac.ru (A.Yu. Aksinenko).

2-bromo-1-oxophosphonates with 2-aminopyridine or 2-aminopyrimidine [13].


2. Results and discussion

Starting imidoyl chloride **2** was obtained by the addition of TFA and SOCl₂ to a solution of 2-aminopyridine in pyridine with further extraction and rectification. The pyridyl iminophosphonate intermediate **3** was not isolated in individual form because of it high reactivity towards triethyl phosphite. In ¹⁹F NMR spectra of the reaction mixture there are signals as imine **3** as well as imidazopyridine **4** and difluoro(triethoxy)phosphorane (doublet at δ_F 15.2, ¹ J_{FP} = 727 Hz). Desired imidazopyridine **4** was obtained using two equivalents of triethyl phosphite. The structure of imidazopyridine **4** was confirmed by treating with diisopropylamine. Thus, a fluorine atom in compound **4** was substituted by the diisopropylamine group affording imidazopyridine **5** (Scheme 3).

The spectral and analytical data of compound **4** are in the agreement with the proposed structure. The presence of C–F fragment in fluorinated heterocycle **4** is confirmed by the signal of C–F carbon (C-3) as doublet of doublet (δ 145.8) with coupling constants ${}^{1}J_{CF}$ = 282.5 Hz and ${}^{2}J_{CP}$ = 29.6 Hz in 13 C NMR spectra. In the spectra of compound **5** there are only one doublet (δ 140.1) with the similar value of the coupling constant (${}^{2}J_{CP}$ = 37.5 Hz) that confirms the lacking of the fluorine atom.

^{*} Corresponding author. Fax: +7 49652 42440.

^{0022-1139/\$ -} see front matter © 2012 Elsevier B.V. All rights reserved. doi:10.1016/j.jfluchem.2012.02.005

Scheme 3.

3. Conclusions

In summary, we developed an efficient method for the synthesis of imidazopyridines bearing fluorine atoms and phosphoryl functionality in an imidazole ring by the reaction of (pyrid-2yl)imidoyl chloride with triethylphosphite. It was shown the fluorine atom in imidazopyridine 4 can be substituted by the amino group.

4. Experimental

4.1. General

 1 H, 19 F and 31 P NMR spectra were recorded on a Bruker DPX 200 spectrometer relative to Me₄Si (internal standard), CF₃COOH and 85% H₃PO₄ (external standards), respectively.

4.2. 2,2,2-Trifluoro-N-(pyridin-2-yl)ethanimidoyl chloride 2

14.4 ml (0.2 mol) of SOCl₂ was added dropwise to a stirred mixture of 4.7 g (0.05 mol) of 2-aminopyridine and 5.7 g (0.05 mol) of CF₃COOH in 16.1 ml (0.2 mol) pyridine at 5–10 °C and leave stand overnight. The resulting mixture was treated with 50 ml of CH₂Cl₂. The precipitate formed was filtered off and solvent was removed *in vacuo*. The residue was distilled to give 4.4 g of imidoyl chloride **2**.

Yield 40%; bp 75 °C/12 Torr. ¹H NMR (200 MHz, CDCl₃): δ 7.03 (1H, dt, *J*_{HH} = 7.9, 0.9 Hz, H-3), 7.27 (1H, ddd, *J*_{HH} = 7.9, 5.0, 0.9 Hz, H-5), 7.84 (1H, ddd, *J*_{HH} = 7.9, 7.4, 1.9 Hz, H-4), 8.56 (1H, ddd, *J*_{HH} = 5.0, 1.9, 0.9 Hz, H-6). ¹⁹F NMR (188.29, CDCl₃): δ 5.69 s. ¹³C NMR (50.32, CDCl₃): δ 116.0 (s, C-5), 117.2 (q, ¹*J*_{CF} = 277.4 Hz, CF₃), 122.6 (s, C-3), 136.2 (q, ²*J*_{CF} = 43.5 Hz, CF₃**C**=N), 138.8 (s, C-4), 149.4 (s, C-6), 156.6 (s, C-2). Calc. for C₇H₄ClF₃N₂: C, 40.31, H, 1.93, N, 13.43%. Found: C, 40.04, H, 2.05, N, 13.52.

4.3. Diethyl (3-fluoroimidazo[1,2-a]pyridin-2-yl)phosphonate 4

To imidoyl chloride 2 (13 mmol) was added triethylphosphite (26 mmol) at 5–10 °C and leave stand overnight. The phosphonate

4 was obtained by silica-gel column chromatography into step: (a) eluent – CHCl₃:EtOH 10:1 and (b) eluent – CHCl₃:EtOH 20:1.

Yield 36%; colorless oil. ¹H NMR (200 MHz, CDCl₃): δ 1.39 (6H, t, J_{HH} = 7.7, CH₃), 4.27 (4H, m, W½ = 19 Hz, CH₂O), 6.94 (1H, td, J_{HH} = 7.0, 1.2 Hz, H-6), 7.24 (1H, ddd, J_{HH} = 9.3, 7.0, 1.4 Hz, H-5), 7.57 (1H, ddt, J_{HH} = 9.3, 1.2, J_{HF} = 1.4 Hz, H-4), 7.96 (1H, dt, J_{HH} = 7.0, 1.4 Hz, H-7). ¹⁹F NMR (188.29, CDCl₃): δ -67.36 (dd, J_{FP} = 13.0 Hz, J_{HF} = 1.4 Hz). ³¹P {H} NMR (81.01, CDCl₃): δ 8.71 (d, J_{PF} = 13.0 Hz). ¹³C NMR (50.32, CDCl₃): δ 16.7 (d, ³ J_{CP} = 6.5 Hz, CH₃), 63.3 (d, ² J_{CP} = 5.8 Hz, CH₂), 112.7 (dd, ¹ J_{CP} = 248.5 Hz, ² J_{CF} = 3.0 Hz, C-2), 114.1 (s, C-5), 119.3 (s, C-7), 121.4 (s, C-4), 125.9 (s, C-6), 139.2 (dd, ³ J_{CP} = 29.6 Hz, C-3). Calc. for C₁₁H₁₄FN₂O₃P: C, 48.54, H, 5.18, N, 10.29%. Found: C, 48.44, H, 5.06, N, 10.45.

4.4. Diethyl (3-diisopropylaminoimidazo[1,2-a]pyridin-2yl)phosphonate 5

The solution of 4 (1 mmol) in 2 ml of diisopropylamine was heated in sealed ampoule at 70 °C for 6 h. Ampoule was opened, the excess of diisopropylamine was evaporated and residue purified by silica-gel column chromatography (CHCl₃:EtOH 20:1) give phosphonate **5**.

Yield 40%; colorless oil. ¹H NMR (200 MHz, CDCl₃): δ 1.24 (6H, d, $J_{HH} = 6.3$, <u>CH</u>₃CH), 1.35 (6H, t, $J_{HH} = 7.2$, <u>CH</u>₃CH₂), 3.45 (1H, septet, $J_{HH} = 6.3$, CH₃CH), 3.78 (1H, d, $J_{HP} = 11.2$ Hz, NH), 4.19 (4H, m, W½ = 21 Hz, CH₂O), 6.80 (1H, td, $J_{HP} = 7.0$ Hz, 1.2, H-6), 7.15 (1H, ddd, $J_{HH} = 9.3$, 7.0, 1.2 Hz, H-5), 7.54 (1H, dt, $J_{HH} = 9.3$, 1.2, H-4), 7.96 (1H, dt, $J_{HH} = 7.0$, 1.4 Hz, H-7). ¹³C NMR (50.32, CDCl₃): δ 16.7 (d, ³ $J_{CP} = 6.5$ Hz, <u>CH</u>₃CH₂), 23.6 (s, Hz, <u>CH</u>₃CH), 49.0 (d, ⁴ $J_{CP} = 1.2$ Hz, CH₃CH), 62.8 (d, ² $J_{CP} = 5.8$ Hz, CH₂), 112.7 (s, C-5), 119.2 (s, C-7), 120.0 (d, ¹ $J_{CP} = 238.8$ Hz, C-2), 123.7 (s, C-4), 125.2 (s, C-6), 140.1 (d, ² $J_{CP} = 37.5$ Hz, C-3), 143.1 (d, ³ $J_{CP} = 23.2$ Hz, C-7a). ³¹P {H} NMR (81.01, CDCl₃): δ 13.85 (s). Calc. for C₁₄H₂₂N₃O₃P: C, 54.01, H, 7.12, N, 13.50%. Found: C, 54.26, H, 7.08, N, 13.38.

Acknowledgement

This research was supported by the Russian Fond of Basic Research (Grant 11-03-00496-a).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.jfluchem.2012.02.005.

References

- [1] A. Andreuni, M. Ravbaldi, G. Locatalli, Eur. J. Med. Chem. 29 (1994) 339-342.
- [2] S.Z. Langer, S. Arbilla, J. Benavides, B. Scatton, Adv. Biochem. Psychopharmacol. 46 (1990) 61–72.
- [3] D.J. Sanger, B. Zivkovic, Psychopharmacology 89 (1986) 317-322.
- [4] F. Huq, H. Daghriri, Q. Yu Jun, P. Beale, K. Fisher, Eur. J. Med. Chem. 39 (2004) 691-697.

- [5] F. Zeng, J.A. Southerland, R.J. Voll, J.R. Votaw, L. Williams, B.J. Ciliax, A.I. Levey, M.M. Goodman, Bioorg. Med. Chem. Lett. 16 (2006) 3015–3018.
- [6] V.B. Sokolov, A.Y. Aksinenko, I.V. Martynov, Russ. Chem. Bull. 54 (2005) 470–472.
 [7] V.B. Sokolov, A.Yu. Aksinenko, T.A. Epishina, T.V. Goreva, Russ. Chem. Bull. 58
- (2009) 631–633.
- V.B. Sokolov, A.Yu. Aksinenko, Russ. Chem. Bull. 58 (2009) 1476–1478.
 A.N. Levov, V.B. Sokolov, A.Yu. Aksinenko, A.V. Il'ina, V.P. Varlamov, Russ. J. Gen.
- Chem. 81 (2011) 1198–1202.
- [10] Y.V. Rassukana, Y.Y. Khomutnyk, P.P. Onys'ko, A.D. Sinitsa, A.A. Gakh, J. Fluorine Chem. 131 (2010) 1044–1048.
- [11] V.F. Shchegelskii, V.B. Sokolov, I.V. Martynov, J. Fluorine Chem. 58 (1992) 377.
- [12] V.F. Shchegelskii, V.B. Sokolov, G.A. Shataeva, V.I. Fetisov, Pharm. Chem. J. 30 (1996) 690-692.
- [13] E. Ohler, M. El-Badawi, E. Zbiran, Chem. Ber. 117 (1984) 3034-3047.